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We investigate the slip boundary condition for flows past a chemically patterned surface. Molecular dynam-
ics simulations show that fluid forces and stresses vary laterally along the patterned surface. A subtraction
scheme is developed to verify the validity of the Navier slip boundary condition, locally, for the patterned
surface. A continuum hydrodynamic model is formulated using the Navier-Stokes equation and the Navier
boundary condition, with a slip length varying along the patterned surface. Steady-state velocity fields from
continuum calculations are in quantitative agreement with those from molecular simulations.
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Recently developed techniques of microfluidics �1� have
generated great interest in further miniaturization towards
nanofluidics �2�. Theoretical and experimental studies of
confined fluids have shown that the slip boundary condition
at the fluid-solid interface can strongly influence the flow
behavior as the system size approaches nanoscale �3�. Mo-
lecular dynamics �MD� studies of slip have focused on
single-phase flow �4–8� and miscible �9,10� and immiscible
�11–13� two-phase flows past homogeneous surfaces. On the
other hand, chemically patterned surfaces have generated in-
terest in novel control of flow in micro- and nanofluidics
�14,15�. In particular, slip flow past nanopatterned surfaces
has been investigated using both MD and continuum simu-
lations �16–20�.

In this paper we study the slip boundary condition for
single-phase flow past a chemically patterned surface. The
validity of the Navier slip boundary condition, locally, is
demonstrated. Continuum calculations are carried out using
the Navier-Stokes equation and the Navier boundary condi-
tion �NBC�, with a slip length varying along the patterned
surface. Continuum steady-state velocity fields are in quan-
titative agreement with those from MD simulations. Con-
tinuum calculations show that when the pattern period is
sufficiently small compared to the slip length, the solid sur-
face appears to be approximately homogeneous, with an ef-
fective slip length tunable by surface patterning.

MD simulations have been carried out for Couette flow
between two solid planar walls parallel to the xy plane, one
with a homogeneous surface at z=H and the other a pat-
terned surface at z=0. The Couette flow is generated by fix-
ing the lower wall and moving the upper wall at a constant
speed V in the x direction. Periodic boundary conditions are
imposed in the x and y directions. Interaction between fluid
molecules of distance r is modeled by a Lennard-Jones �LJ�
potential Uf f�r�=4���� /r�12− �� /r�6�, where � is the energy
scale and � the range scale. The average number density for
the fluid is set at �=0.81�−3. The temperature is maintained

at 1.4� /kB. Each wall is constructed by two �001� planes of
an fcc lattice, with each wall molecule attached to a lattice
site by a harmonic spring. The mass of the wall molecule
equals that of the fluid molecule m. The number density of
the wall equals �w=1.86�−3. The fluid-solid interaction is
modeled by a modified LJ potential Ufs�r�=4� fs��� fs /r�12

−� fs�� fs /r�6�, with the energy and range parameters given by
� fs=1.16� and � fs=1.04�, and a dimensionless parameter � fs
for adjusting the wetting property of the fluid. The lower
solid surface is patterned, and the patterning is modeled by
the oscillating parameter �21�: � fs�x�=�0+�1 cos�2�x / P�,
where x is the x-coordinate of the wall molecule, �0 is a
constant, �1 is the oscillation amplitude for � fs, and P is the
oscillation period, set to be larger than 10�. The upper solid
surface is homogeneous, where the fluid-solid interaction has
a constant � fs equaling �0. We use �0=1 and �1=0.3. The
fluid-solid interaction potential Ufs is cut off at rc=2.2�. The
confined fluid measures H along z and the system dimen-
sions along x and y are L and 6.8�. The MD results are
obtained for V=0 and 0.25�� /m, H=13.6�, and L=54.5�,
with L= P or 2P.

We measure five quantities: Gx
w, the tangential wall force

per unit area exerted by the wall on the fluid molecules in a
horizontal layer; �xx and �zx, the xx and zx components of
the fluid stress tensor; and vx and vz, the x and z components
of the fluid velocity. As reference quantities, we also measure
Gx

w0, �xx
0 , and �zx

0 in the static �V=0� state. Here the super-
script “0” denotes the static quantities. Spatial resolution
along the x and z directions is obtained by evenly dividing
the measurement region into bins, each �x=0.85� by �z
=0.85�. Static equilibrium-state �V=0� and dynamic steady-
state �V�0� quantities are obtained from time average over
5�105� or longer where �=�m�2 /�.

In the static state, various fluid forces and stresses vary
along the patterned surface. The nonuniform static state
forms a microscopic background upon which hydrodynamic
variations are generated when the fluid is sheared. To obtain
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a hydrodynamic quantity, the static part needs to be sub-
tracted from the corresponding dynamic quantity:

Q̃ = QD − QS, �1�

where QS is a static �reference� quantity, QD the correspond-
ing dynamic quantity, and the overtilde denotes the hydrody-
namic quantity. Physically, the characteristic variation mag-

nitude of Q̃ should be much smaller than that of QD and QS.
Therefore, in deducing a continuum relation, if a hydrody-

namic quantity Q̃ is to be used, then it can by no means be
replaced by a dynamic quantity QD, without subtracting the
static part.

The hydrodynamic tangential force balance in the bound-
ary layer between z=0 and z=�z is

G̃x
w�x,�z/2� + G̃x

f�x,�z/2� = 0, �2�

with the hydrodynamic tangential fluid force

G̃x
f�x,�z/2� = �x�

0

�z

dz�̃xx�x,z� + �̃zx�x,�z� . �3�

This integrated form is necessary because the tangential wall
force is distributed within a finite distance from the wall.
Beyond the boundary layer, the hydrodynamic tangential

wall force G̃x
w vanishes. The short-range nature of G̃x

w is due

to the fact that G̃x
w solely arises from the “roughness” of wall

potential �5�. Hereafter we use G̃x
w�x��=G̃x

w�x ,�z /2�� to de-
note the total hydrodynamic tangential wall force. We take

the sharp boundary limit by letting G̃x
w strictly concentrate at

z=0. This leads to G̃x
f�x ,�z /2�= �̃zx�x ,0+�. Hereafter we use

G̃x
f�x��=G̃x

f�x ,�z /2�� to denote the hydrodynamic tangential
fluid force. It follows that

G̃x
f�x� = �̃zx�x,0+� = − G̃x

w�x� , �4�

from which a slip boundary condition will be obtained.
The hydrodynamic viscous coupling between the fluid

and solid is described by the Navier slip model:

G̃x
w�x� = − 	�x�vx

slip�x� , �5�

where 	�x� is the local slip coefficient and the slip velocity
vx

slip is the boundary-layer tangential fluid velocity relative to
the wall, i.e., vx

slip=vx at the lower surface or vx
slip=vx−V at

the upper surface. The Navier slip model has been verified
by many MD studies, but mostly for homogeneous solid sur-
faces only �4–7�. For patterned surfaces, the local nature of
the Navier model can be better revealed. In particular, the
local coupling constant 	 should depend on x through the
parameter � fs�x� in potential Ufs:

	�x� = 	„� fs�x�… , �6�

where 	 as a function of � fs, denoted by 	�� fs�, relates a
microscopic interaction parameter and a hydrodynamic slip
coefficient.

To verify Eq. �6�, independent MD simulations have been
carried out for Couette flows between two identical homoge-
neous solid surfaces, using fluid-solid interaction potentials

with a constant � fs. For each particular value of � fs, the slip
coefficient 	 can be measured. The functional dependence of
	 on � fs, 	�� fs�, has been numerically obtained by scanning
a set of values for � fs. Substituting � fs�x� into 	�� fs� then
yields 	�x� for the patterned surface. Using this 	�x� and the
slip velocity profile vx

slip�x� directly measured in the MD

simulation, we calculate G̃x
w�x� at the patterned surface ac-

cording to Eq. �5�, shown in Fig. 1 with a comparison to the

measured G̃x
w�x�. The good agreement clearly verifies the lo-

cal Navier slip model expressed by Eqs. �5� and �6�. Of
course, the local dependence of 	 on � fs is not without limit.
Physically, to validate Eq. �6� for 	�x� in Eq. �5�, the lateral
variation of � fs must be slow. In fact, the disagreement be-
tween MD and continuum results was observed for pattern
period approaching a molecular scale �20�.

Far away from the solid surface, the momentum transport
is described by the Navier-Stokes equation

�� �v

�t
+ �v · ��v� = − �p + 
�2v , �7�

where the viscosity 
=2.1��m /�2 has been determined by
MD measurements. Close to the rigid wall, however, the
fluid density shows a short-range oscillation along the sur-

FIG. 2. Hydrodynamic tangential stress �̃zx�x ,z� at z=2�z, plot-
ted as a function of x. The circles denote �zx�x ,2�z�−�zx

0 �x ,2�z�;
the dashed line denotes 
��zvx+�xvz� calculated from the MD flow
field, with 
=2.3��m /�2 to achieve the best agreement.

FIG. 1. Hydrodynamic tangential wall force G̃x
w�x� at the lower

fluid-solid interface. The circles denote G̃x
w�x� directly measured in

the MD simulation; the squares denote G̃x
w�x� calculated from 	�x�

and the measured vx
slip�x�.
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face normal z across a few molecular layers, in addition to a
lateral oscillation along x imposed by the surface pattern. We
proceed using a constant viscosity throughout the fluid space.
The hydrodynamic tangential stress �̃zx�x ,z� has been mea-
sured at z=2�z where density oscillation is 	10%, and then
compared to that calculated from the Newtonian relation

��zvx+�xvz� using the MD measured velocity field �see Fig.
2�. The overall agreement is satisfactory. Combining Eqs.
�4�–�6� with the Newtonian relation for �̃zx at the solid sur-
face yields the NBC

	„� fs�x�…vx = 
�zvx, �8�

with a local slip coefficient 	(� fs�x�). The local slip length is
defined as ls�x�=
 /	(� fs�x�). Continuum calculations in-
volve six parameters, none adjustable: the system dimen-
sions L and H, the shearing speed V, the fluid density �, the
viscosity 
, and the slip coefficient 	 �as a function of � fs�.

The continuum and MD results agree quantitatively. Fig-

ures 3 and 4 show the periodic vx profiles close to the lower
wall, for sinusoidal and stepwise � fs�x�’s in Ufs�r�, respec-
tively. The latter case corresponds to the transverse case
studied in Ref. �20�. In the first period −P /2�x� P /2,
� fs�x�=�0−�1 for −P /4�x� P /4 or �0+�1 elsewhere. The
small discrepancies may be attributed to the small H, the
nonuniform boundary-layer fluid, and the fast variation of
� fs.

More continuum hydrodynamic calculations have been
carried out for viscous flow with small Reynolds numbers
Re=�VH /
	1. Analytical and numerical results have been
obtained for Stokes flow satisfying mixed slip conditions,
and the concept of effective slip length has been introduced
for different flow geometries with various patterned surfaces
�16,17,19,20�. Our results here show essentially the same
physics. We consider a patterned surface composed of a pe-
riodic array of stripes parallel to the y axis, each of type A or
B, arranged according to ¯ABABAB¯ to realize the peri-
odicity along the x direction. The continuum model uses two
different slip lengths lsA and lsB for A and B stripes, respec-
tively, and the surface pattern is continuously varied. The
scaled steady-state velocity fields, v�x /H ,z /H� /V, are con-
trolled by the dimensionless parameters lsA /H, lsB /H, wA /H,
and wB /H, where wA and wB are the widths of A and B
stripes.

FIG. 3. vx plotted as a function of x for four z levels close to the
lower wall of sinusoidal fluid-solid interaction. The symbols denote
the MD data and the lines represent the corresponding continuum
results, obtained for a system of H=13.6�, L=2P=54.4�, and V
=0.25�� /m. The four z levels are at z=0.425� �circles and solid
line�, 1.275� �squares and dashed line�, 2.125� �diamonds and dot-
ted line�, and 2.975� �triangles and dash-dotted line�.

FIG. 4. vx plotted as a function of x for four z levels close to the
lower wall of stepwise fluid-solid interaction. The symbols denote
the MD data and the lines represent the corresponding continuum
results, obtained for a system of H=13.6�, L= P=54.4�, and V
=0.25�� /m. The four z levels are at z=0.425� �circles and solid
line�, 1.275� �squares and dashed line�, 2.125� �diamonds and dot-
ted line�, and 2.975� �triangles and dash-dotted line�.

FIG. 5. Slip profiles at differently patterned solid surfaces. The
pattern period P=wA+wB varies from H to H /8, with equal stripe
widths �wA=wB�. The solid line is for P /H=1, the dashed line for
P /H=1/2, the dotted line for P /H=1/4, and the dash-dotted line
for P /H=1/8.

FIG. 6. Slip profiles at differently patterned solid surfaces. The
pattern period P=wA+wB equals H /4, with wA /wB varying from
1/3 �solid line� to 1 �dashed line� and to 3 �dotted line�.
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Steady-state slip profiles are obtained for six differently
patterned surfaces with lsA /H=0.147 and lsB /H=0.441. Fig-
ure 5 shows that the slip velocity becomes less oscillatory in
magnitude as the pattern period P is decreased. Therefore a
solid surface patterned with a sufficiently small period ap-
pears to be homogeneous. The nearly uniform slip velocity
can be used to define an effective slip length ls

ef f, given by
ls
ef f /H=vx

ave / �V−vx
ave� for the Couette flow. The data in Fig. 5

yield ls
ef f /H=0.196. For small period P, the effective slip

length can be further tuned by varying the ratio of the two
stripe widths. Figure 6 shows that by fixing P /H at 1 /4 and
increasing the proportion of the A stripes, the average

amount of slip is appreciably reduced. So ls
ef f decreases with

the increasing proportion of the A stripes.
In summary, for single-phase flow past a chemically pat-

terned surface, the validity of the NBC has been verified. A
continuum hydrodynamic model has been formulated, yield-
ing steady-state flow fields in quantitative agreement with
MD results. It is also shown that an effective slip length can
be realized and tuned by surface patterning.
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